Discriminative human action recognition in the learned hierarchical manifold space

نویسندگان

  • Lei Han
  • Xinxiao Wu
  • Wei Liang
  • Guangming Hou
  • Yunde Jia
چکیده

In this paper, we propose a hierarchical discriminative approach for human action recognition. It consists of feature extraction with mutual motion pattern analysis and discriminative action modeling in the hierarchical manifold space. Hierarchical Gaussian Process Latent Variable Model (HGPLVM) is employed to learn the hierarchical manifold space in which motion patterns are extracted. A cascade CRF is also presented to estimate the motion patterns in the corresponding manifold subspace, and the trained SVM classifier predicts the action label for the current observation. Using motion capture data, we test our method and evaluate how body parts make effect on human action recognition. The results on our test set of synthetic images are also presented to demonstrate the robustness. 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep manifold-to-manifold transforming network for action recognition

In this paper, a novel deep manifold-to-manifold transforming network (DMT-Net) is proposed for action recognition, in which symmetric positive definite (SPD) matrix is adopted to describe the spatial-temporal information of action feature vectors. Since each SPD matrix is a point of the Riemannian manifold space, the proposed DMT-Net aims to learn more discriminative feature by hierarchically ...

متن کامل

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning

Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labele...

متن کامل

Learning Neighborhood Discriminative Manifolds for Video-Based Face Recognition

In this paper, we propose a new supervised Neighborhood Discriminative Manifold Projection (NDMP) method for feature extraction in video-based face recognition. The abundance of data in videos often result in highly nonlinear appearance manifolds. In order to extract good discriminative features, an optimal low-dimensional projection is learned from selected face exemplars by solving a constrai...

متن کامل

Domain Transfer Learning for Object and Action Recognition

Title of dissertation: Domain Transfer Learning for Object and Action Recognition Jingjing Zheng, Doctor of Philosophy, 2015 Dissertation directed by: Professor Rama Chellappa Department of Electrical and Computer Engineering Visual recognition has always been a fundamental problem in computer vision. Its task is to learn visual categories using labeled training data and then identify unlabeled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Image Vision Comput.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2010